最大的障礙非常常見:低分辨率的視頻
時間:2022-03-04 10:04:01 | 來源:行業(yè)動態(tài)
時間:2022-03-04 10:04:01 來源:行業(yè)動態(tài)
舉個例子來說,一個神經網絡經過訓練,可以分析視頻中的人類行為。這些工作是通過將人體細分為多個部分--手臂、腿、肩膀、頭部等--然后觀察這些小的部分在視頻中從一幀到另一幀的變化來進行的。這樣,人工智能可以告訴你是否有人在跑步,或者是在梳頭發(fā)。Hauptmann對《The Verge》表示:"但是這取決于你所擁有的視頻的分辨率。" Hauptmann表示:"如果我用一個攝像頭對準停車場的盡頭,如果我能分辨出是否有人打開了車門,就算是非常幸運的了。如果你就站在(攝像頭)前面彈吉他,它就可以跟蹤你每一根手指的動作。"
對于閉路電視監(jiān)控系統(tǒng)來說,這是一個大問題,攝像頭往往會有顆粒感,而角度也常常很怪異。Hauptmann舉了一個便利店攝像頭的例子,攝像頭的目的是監(jiān)控收銀機,但是它也監(jiān)視著面向街道的窗子。如果外面發(fā)生了搶劫,攝像頭的鏡頭有一部分被擋住了,那么人工智能可能就會卡住。他表示:"但是我們作為人類,可以想象正在發(fā)生的事情,并且把它們拼湊在一起。可是電腦就做不到這一點。"
同樣,雖然人工智能很好地識別視頻中的相關事件(例如,某人正在刷牙、看手機或者踢足球),但仍不能提取重要的因果關系。以分析人類行為的神經網絡為例。它可能會看到鏡頭并說"這個人正在跑步",但它不能告訴你他們之所以在跑步,是因為他們快要趕不上公共汽車了,還是因為他們偷了某人的手機。
這些關于準確度的問題應該讓我們認真思考一些人工智能創(chuàng)業(yè)企業(yè)的宣言。我們現在還遠未接近這樣一個點:電腦通過觀看視頻能夠獲得和人類一樣的見解。(研究人員可能會告訴你,要做到這一點可是太困難了,因為它基本上是"解決"智力問題的同義詞。)但是事情的發(fā)展速度非??臁?br>
Hauptmann表示使用車牌跟蹤功能跟蹤車輛是"一個已經得到解決的實際問題",在受控設置中的面部識別也是一樣的。(使用低質量的閉路電視監(jiān)控視頻進行面部識別就完全是另一回事了。)對汽車和衣物等物品的識別也非??煽?,在多臺攝像機之間自動跟蹤一個人也是可以實現,但前提是條件是正確的。Hauptmann表示:"在一個非擁擠的場景中跟蹤一個人的效果可能非常好,但是在擁擠的場景中,還是算了吧。"他表示,如果這個人穿著的是不起眼的服裝,要做到這一點就特別難。
一些人工智能監(jiān)控任務已經解決了;另外一些還需要繼續(xù)努力
但是,即使是這些非?;镜墓ぞ咭部梢援a生非常強大的效果。比如在莫斯科,一個類似的基礎設施正在組裝,將面部識別軟件插入到一個集中式系統(tǒng)中,該系統(tǒng)擁有超過10萬臺高分辨率攝像頭,覆蓋了這個城市90%以上的公寓入口。
在這種情況下,可能會有一個良性循環(huán),隨著軟件越來越好,系統(tǒng)會收集更多的數據,從而幫助軟件變得更好。Hauptmann表示:"我認為這一切都會有所改善。"他表示:"這種情況正在出現。"
如果這些系統(tǒng)已經在工作了,那么我們就已經有了像算法偏差這樣的問題。這可不是一個假設的挑戰(zhàn)。研究表明,機器學習系統(tǒng)吸收了為它們編寫程序的社會的種族歧視和性別歧視--從總是會將女性放置在廚房的圖像識別軟件到總是說黑人更容易再次犯罪的刑事司法系統(tǒng),比比皆是。如果我們使用舊的視頻剪輯來訓練人工智能監(jiān)控系統(tǒng),例如采集自閉路電視視頻監(jiān)控或者警察佩戴的攝像頭的視頻,那么存在于社會中的偏見就很可能會延續(xù)下去。
Meredith Whittaker是紐約大學(NYU)關注道德的"AI Now"研究所的聯席主任,她表示,這個過程已經在執(zhí)法過程出現了,并將擴展到私有部門。Whittaker舉出了Axon(以前被稱為Taser)的例子,該公司收購了幾家人工智能公司,以幫助其將視頻分析功能集成到產品中。Whittaker表示:"他們得到的數據來自警察佩戴的攝像頭,這些數據告訴了我們很多關于單個警務人員會關注誰的情況,但是并沒有給我們一個完整的描述。 "她表示:"這是一個真正的危險,我們正在將帶有偏見的犯罪和罪犯的圖片普遍化。"
ACLU高級政策分析師Jay Stanley表示,即使我們能夠解決這些自動化系統(tǒng)中的偏見,也不能使它們變得良性。他說,將閉路電視視頻監(jiān)控攝像頭從被動的觀察者轉變?yōu)橹鲃拥挠^察者可能會對公民社會產生巨大的不利影響。
"我們希望人們不僅僅擁有自由,還要感受到自由。"
Stanley表示:"我們希望人們不僅僅擁有自由,還要感受到自由。這意味著他們不必擔心未知的、看不見的觀眾會如何解釋或曲解他們的每一個動作和話語。" Stanley表示:"要擔心的是人們會不斷地自我監(jiān)控,擔心他們所做的一切都會被曲解,并給他們的生活帶來負面的后果。"
Stanley還表示,不準確的人工智能監(jiān)控發(fā)出的錯誤警報也可能導致執(zhí)法部門和公眾之間更加危險的對抗。比如說,想想看Daniel Shaver的槍擊事件吧,在看到Shaver拿著槍后,一名警察被叫到德克薩斯州的一個旅館房間里。警長Charles Langley在Shaver按照他的要求趴在地面上時,開槍射殺了他。而Shaver被發(fā)現持有的槍是一支粒丸槍,這是他用來從事他的害蟲控制工作的。
如果一個人可以犯這樣的錯誤,電腦還有什么機會?而且,即使是監(jiān)控系統(tǒng)變得部分自動化,這樣的錯誤會變得更加常見還是更少?Stanley表示:"如果技術出現在那里,就會有一些警察不得不照看那里。"
當人工智能監(jiān)控變得普及的時候,誰來管理這些算法呢?
Whittaker表示,我們在這個領域看到的只是人工智能大趨勢的一部分,在這個趨勢中,我們使用這些相對粗糙的工具,嘗試著根據人們的形象對他們進行分類。她列舉了去年發(fā)表的一項有爭議的研究作為一個類似的例子,該研究聲稱能夠通過面部識別來確定性取向。人工智能給出的結果的準確性值得懷疑,但批評人士指出,它是否有效并不重要;重要的是人們是否相信它有用,并且是否會仍然使用數據做判斷。
Whittaker表示:"令我感到不安的是,許多這樣的系統(tǒng)正在被注入我們的核心基礎設施之中,而且沒有讓我們可以提出關于有效性問題的民主程序,也沒有通知大家將要部署這些系統(tǒng)。"Whittaker表示:"這不過是正在出現的又一個新的例子:算法系統(tǒng)根據模式識別提供分類并確定個體類型,可是這些識別模式是從數據中提取的,而這些數據里包含了文化和歷史的偏見。"
當我們向IC Realtime公司詢問人工智能監(jiān)控可能如何被濫用的問題時,他們給出了一個在科技行業(yè)常見的答案:這些技術是價值中立的,只是如何使用它們以及由誰來使用它們才決定了它們是好是壞。Sailor表示:"任何新技術都面臨著有可能落入不法之徒的手中的危險。"Sailor表示:"任何技術都是如此而我認為在這個問題上,利遠大于弊。"