時間:2023-03-15 23:00:01 | 來源:電子商務(wù)
時間:2023-03-15 23:00:01 來源:電子商務(wù)
目錄推薦系統(tǒng)中用戶對物品的反饋分為顯式和隱式反饋,顯式反饋 (如評分、評級) 或單一的隱式反饋 (如瀏覽、點擊、加入購物車)。 隱式反饋推薦是推薦系統(tǒng)通過對內(nèi)容和用戶行為的分析,建立適當(dāng)?shù)哪P?幫助用戶從海量的數(shù)據(jù)中找到自己感興趣的內(nèi)容。推薦系統(tǒng)中用戶的行為反饋包括顯式反饋和隱式反饋,隱式反饋信息在推薦系統(tǒng)算法中被廣泛應(yīng)用。隱式反饋體現(xiàn)著用戶的興趣愛好,對隱式反饋信息的挖掘有助于提高推薦系統(tǒng)的效果,以更好地設(shè)計推薦系統(tǒng)。2. 項目分析目的
select count(*), count(UserID), count(Product_ID), count(Product_Category_ID), count(Behavior),count(Timestamp)from Userbehavior;
我們在當(dāng)初定義表的時候,選擇了not null選項,現(xiàn)在在用count計算時,會發(fā)現(xiàn),我們時沒有缺失值的。delete from 表名 where 列名 is null;
第二種,是填充缺失值select coalesce(列名, 要填充的值) from 表名;
3. 將時間戳轉(zhuǎn)換和拆分為日期和時間alter table Userbehavior add 日期 varchar(255);update Userbehaviorset 日期=from_unixtime(時間戳,'%Y-%m-%d');
修改后結(jié)果如圖alter table Userbehavior add Time varchar(255);update Userbehaviorset Time =from_unixtime(時間戳,'%H:%i:%s')
修改結(jié)果如圖DELETE FROM userbehavior WHERE 日期 not BETWEEN '2017-11-25' AND '2017-12-03';
這樣就刪除了,不在我們需要的日期范圍內(nèi)的數(shù)據(jù)啦SELECT product_category_ID,COUNT(product_category_ID)AS Num FROM userbehaviorGROUP BY product_category_IDORDER BY Num DESCLIMIT 10;
我們選取了熱銷產(chǎn)品的TOP10來看,但是這里有一個問題,這個榜是包含了用戶所有行為的表格,包括加購,收藏,點擊和購買,我們拆開來看看,每個環(huán)節(jié)的情況。select Product_Category_ID,COUNT(product_category_id)AS Num,(Select COUNT(u2.product_category_id) from userbehavior u2 WHERE u1.product_category_id = u2.Product_Category_ID AND Behavior = 'pv') as pv,(Select COUNT(u2.product_category_id) from userbehavior u2 WHERE u1.product_category_id = u2.Product_Category_ID AND Behavior = 'cart') as cart,(Select COUNT(u2.product_category_id) from userbehavior u2 WHERE u1.product_category_id = u2.Product_Category_ID AND Behavior = 'fav') as fav,(Select COUNT(u2.product_category_id) from userbehavior u2 WHERE u1.product_category_id = u2.Product_Category_ID AND Behavior = 'buy') as buyFrom userbehavior u1Group by u1.product_category_idOrder By Num DescLIMIT 10;
我們可以看到,毫不意外,用戶主要的行為還是在點擊量上。select Product_Category_ID,COUNT(product_category_id)AS Sum,(Select COUNT(u2.product_category_id) from userbehavior u2 WHERE u1.product_category_id = u2.Product_Category_ID AND Behavior = 'pv') as pv,(Select COUNT(u2.product_category_id) from userbehavior u2 WHERE u1.product_category_id = u2.Product_Category_ID AND Behavior = 'cart') as cart,(Select COUNT(u2.product_category_id) from userbehavior u2 WHERE u1.product_category_id = u2.Product_Category_ID AND Behavior = 'fav') as fav,(Select COUNT(u2.product_category_id) from userbehavior u2 WHERE u1.product_category_id = u2.Product_Category_ID AND Behavior = 'buy') as buy,CONCAT(ROUND(((Select COUNT(u2.product_category_id) from userbehavior u2 WHERE u1.product_category_id = u2.Product_Category_ID AND Behavior = 'buy')/(Select COUNT(u2.product_category_id) from userbehavior u2 WHERE u1.product_category_id = u2.Product_Category_ID AND Behavior = 'pv')*100),2),'%') AS changesFrom userbehavior u1Group by u1.product_category_idOrder By sum DescLIMIT 10;
我們發(fā)現(xiàn),行為總數(shù)最多的商品種類3607361,成交率是0.那么很顯然,產(chǎn)品的高點擊量本質(zhì)上毫無意義,因為不能給店鋪帶來收益。在高點擊量的情況下,我們能夠看出,該產(chǎn)品的獲客能力是很強的,證明公司的推廣策略本身很有效,但是用戶點擊進(jìn)來后的,加購,收藏,和購買行為都在我們上面展示的10條數(shù)據(jù)里面,并不算是偏高的。由此說明,用戶點擊進(jìn)來后,沒有找到自己想要的,或者說,用戶點擊來發(fā)現(xiàn)產(chǎn)品不是自己期望的。該產(chǎn)品就需要在這種方面進(jìn)行改善。SELECT CONCAT(ROUND(((SELECT COUNT(UserID) FROM userbehavior WHERE Behavior = 'pv')-(SELECT COUNT(UserID)FROM userbehavior WHERE Behavior = 'buy'))/COUNT(*)*100,2),'%') AS 加購流失率FROM userbehavior;
我們看到這個用戶流失率高達(dá)88.07%,我們先來看看剩下幾個路徑,再來一起對比。SELECT CONCAT(ROUND(((SELECT COUNT(UserID) FROM userbehavior WHERE Behavior = 'pv')-(SELECT COUNT(UserID)FROM userbehavior WHERE Behavior = 'cart'))/COUNT(*)*100,2),'%') AS 加購流失率,CONCAT(ROUND(((SELECT COUNT(UserID) FROM userbehavior WHERE Behavior = 'cart')-(SELECT COUNT(UserID)FROM userbehavior WHERE Behavior = 'buy'))/COUNT(*)*100,2),'%') AS 購買流失率FROM userbehavior;
加購流失率:84.48% 加購后購買流失率 - 3.58%SELECT CONCAT(ROUND(((SELECT COUNT(UserID) FROM userbehavior WHERE Behavior = 'pv')-(SELECT COUNT(UserID)FROM userbehavior WHERE Behavior = 'fav'))/COUNT(*)*100,2),'%') AS 收藏流失率,CONCAT(ROUND(((SELECT COUNT(UserID) FROM userbehavior WHERE Behavior = 'fav')-(SELECT COUNT(UserID)FROM userbehavior WHERE Behavior = 'buy'))/COUNT(*)*100,2),'%') AS 購買流失率FROM userbehavior;
收藏流失率: 86.87%, 購買流失率: 1.19%SELECT CONCAT(ROUND(((SELECT COUNT(UserID) FROM userbehavior WHERE Behavior = 'pv')-(SELECT COUNT(UserID)FROM userbehavior WHERE Behavior = 'cart'))/COUNT(*)*100,2),'%') AS 加購流失率,CONCAT(ROUND(((SELECT COUNT(UserID) FROM userbehavior WHERE Behavior = 'cart')-(SELECT COUNT(UserID)FROM userbehavior WHERE Behavior = 'fav'))/COUNT(*)*100,2),'%') AS 收藏流失率,CONCAT(ROUND(((SELECT COUNT(UserID) FROM userbehavior WHERE Behavior = 'fav')-(SELECT COUNT(UserID)FROM userbehavior WHERE Behavior = 'buy'))/COUNT(*)*100,2),'%') AS 購買流失率FROM userbehavior;
加購流失率: 84.48%, 收藏流失率: 2.39%, 購買流失率 : 1.19%SELECT date, COUNT(behavior) as pv, COUNT(DISTINCT UserID) AS uvFROM userbehaviorWHERE Behavior = 'pv'GROUP BY DateORDER BY Date;
我們從上述數(shù)據(jù)可以看出,在1202和1203這兩天,用戶無論是點擊量還是獨立用戶訪問數(shù),都略高于平時。我們對這兩天訪問量高做假設(shè)檢驗的分析SELECT UserID,DATEDIFF('2017-12-3',max(date)) as R ,count(Behavior) as Ffrom userbehaviorwhere Behavior ='buy'group by UserIDORDER BY R DESC,F DESC;
隨后,我們指定自己的打分規(guī)則SELECT a.*,(case when R<=2 then 4when R between 3 and 4 then 3when R between 5 and 6 then 2when R between 7 and 8 then 1 end) as Rscore,(case when F between 1 and 3 then 1when F between 4 and 6 then 2when F between 7 and 9 then 3when F>=10 then 4 end) as Fscorefrom (SELECT UserID,DATEDIFF('2017-12-3',max(date)) as R ,count(Behavior) as Ffrom userbehaviorwhere Behavior ='buy'group by UserID)a;
關(guān)鍵詞:數(shù)據(jù),分析,用戶,平臺
微信公眾號
版權(quán)所有? 億企邦 1997-2025 保留一切法律許可權(quán)利。